Assessing the causality of interferon-γ and its receptor 1/2 with systemic lupus erythematosus risk using genetic data (2024)

1 Fanouriakis, A., Tziolos, N., Bertsias, G. & Boumpas, D. T. Update οn the diagnosis and management of systemic lupus erythematosus. Ann Rheum Dis 80, 14-25, doi:10.1136/annrheumdis-2020-218272 (2021).

2 Murphy, G. & Isenberg, D. A. New therapies for systemic lupus erythematosus - past imperfect, future tense. Nat Rev Rheumatol 15, 403-412, doi:10.1038/s41584-019-0235-5 (2019).

3 Catalina, M. D., Owen, K. A., Labonte, A. C., Grammer, A. C. & Lipsky, P. E. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun 110, 102359, doi:10.1016/j.jaut.2019.102359 (2020).

4 Fava, A. & Petri, M. Systemic lupus erythematosus: Diagnosis and clinical management. J Autoimmun 96, 1-13, doi:10.1016/j.jaut.2018.11.001 (2019).

5 Kaul, A.et al. Systemic lupus erythematosus. Nat Rev Dis Primers 2, 16039, doi:10.1038/nrdp.2016.39 (2016).

6 Dörner, T. & Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 393, 2344-2358, doi:10.1016/s0140-6736(19)30546-x (2019).

7 Liu, W., Li, M., Wang, Z. & Wang, J. IFN-γ Mediates the Development of Systemic Lupus Erythematosus. Biomed Res Int 2020, 7176515, doi:10.1155/2020/7176515 (2020).

8 Psarras, A., Emery, P. & Vital, E. M. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford) 56, 1662-1675, doi:10.1093/rheumatology/kew431 (2017).

9 Ding, H., Wang, G., Yu, Z., Sun, H. & Wang, L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother 155, 113683, doi:10.1016/j.biopha.2022.113683 (2022).

10 Encalada-Díaz, M. I. [3D Printing and Orthopedics of Mexico]. Acta Ortop Mex 36, 1 (2022).

11 Liu, M.et al. Higher activation of the interferon-gamma signaling pathway in systemic lupus erythematosus patients with a high type I IFN score: relation to disease activity. Clin Rheumatol 37, 2675-2684, doi:10.1007/s10067-018-4138-7 (2018).

12 Groettrup, M., Khan, S., Schwarz, K. & Schmidtke, G. Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83, 367-372, doi:10.1016/s0300-9084(01)01251-2 (2001).

13 Ozmen, L.et al. Experimental therapy of systemic lupus erythematosus: the treatment of NZB/W mice with mouse soluble interferon-gamma receptor inhibits the onset of glomerulonephritis. Eur J Immunol 25, 6-12, doi:10.1002/eji.1830250103 (1995).

14 Li, C., Yang, W., Wei, Q. & Shang, H. Causal Association of Leukocytes Count and Amyotrophic Lateral Sclerosis: a Mendelian Randomization Study. Mol Neurobiol 57, 4622-4627, doi:10.1007/s12035-020-02053-7 (2020).

15 Dan, Y. L.et al. Circulating adiponectin levels and systemic lupus erythematosus: a two-sample Mendelian randomization study. Rheumatology (Oxford) 60, 940-946, doi:10.1093/rheumatology/keaa506 (2021).

16 Gagliano Taliun, S. A. & Evans, D. M. Ten simple rules for conducting a mendelian randomization study. PLoS Comput Biol 17, e1009238, doi:10.1371/journal.pcbi.1009238 (2021).

17 Sun, B. B.et al. Genomic atlas of the human plasma proteome. Nature 558, 73-79, doi:10.1038/s41586-018-0175-2 (2018).

18 Bentham, J.et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47, 1457-1464, doi:10.1038/ng.3434 (2015).

19 Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27, 1133-1163, doi:10.1002/sim.3034 (2008).

20 Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40, 755-764, doi:10.1093/ije/dyr036 (2011).

21 Soliman, G. A. & Schooling, C. M. Causal association between mTOR-dependent EIF-4E and EIF-4A circulating protein levels and type 2 diabetes: a Mendelian randomization study. Sci Rep 10, 15737, doi:10.1038/s41598-020-71987-8 (2020).

22 Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol 40, 740-752, doi:10.1093/ije/dyq151 (2011).

23 Palmer, T. M.et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res 21, 223-242, doi:10.1177/0962280210394459 (2012).

24 Burgess, S., Scott, R. A., Timpson, N. J., Davey Smith, G. & Thompson, S. G. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol 30, 543-552, doi:10.1007/s10654-015-0011-z (2015).

25 Lin, Z., Deng, Y. & Pan, W. Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genet 17, e1009922, doi:10.1371/journal.pgen.1009922 (2021).

26 Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44, 512-525, doi:10.1093/ije/dyv080 (2015).

27 Bowden, J., Davey Smith, G., Hayco*ck, P. C. & Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol 40, 304-314, doi:10.1002/gepi.21965 (2016).

28 Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50, 693-698, doi:10.1038/s41588-018-0099-7 (2018).

29 Bowden, J.et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol 47, 1264-1278, doi:10.1093/ije/dyy101 (2018).

30 Fava, A.et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 5, doi:10.1172/jci.insight.138345 (2020).

31 Csiszár, A., Nagy, G., Gergely, P., Pozsonyi, T. & Pócsik, E. Increased interferon-gamma (IFN-gamma), IL-10 and decreased IL-4 mRNA expression in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol 122, 464-470, doi:10.1046/j.1365-2249.2000.01369.x (2000).

32 Thomason, J. L., Obih, U. M., Koelle, D. M., Lood, C. & Hughes, A. G. An interferon-gamma release assay as a novel biomarker in systemic lupus erythematosus. Rheumatology (Oxford) 59, 3479-3487, doi:10.1093/rheumatology/keaa161 (2020).

33 Cesaroni, M.et al. Suppression of Serum Interferon-γ Levels as a Potential Measure of Response to Ustekinumab Treatment in Patients With Systemic Lupus Erythematosus. Arthritis Rheumatol 73, 472-477, doi:10.1002/art.41547 (2021).

34 Jacob, C. O., van der Meide, P. H. & McDevitt, H. O. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J Exp Med 166, 798-803, doi:10.1084/jem.166.3.798 (1987).

35 Hron, J. D. & Peng, S. L. Type I IFN protects against murine lupus. J Immunol 173, 2134-2142, doi:10.4049/jimmunol.173.3.2134 (2004).

36 Darnell, J. E., Jr., Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-1421, doi:10.1126/science.8197455 (1994).

37 Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75, 163-189, doi:10.1189/jlb.0603252 (2004).

38 Tau, G. & Rothman, P. Biologic functions of the IFN-gamma receptors. Allergy 54, 1233-1251, doi:10.1034/j.1398-9995.1999.00099.x (1999).

39 Oriss, T. B., McCarthy, S. A., Morel, B. F., Campana, M. A. & Morel, P. A. Crossregulation between T helper cell (Th)1 and Th2: inhibition of Th2 proliferation by IFN-gamma involves interference with IL-1. J Immunol 158, 3666-3672 (1997).

40 Cope, A., Le Friec, G., Cardone, J. & Kemper, C. The Th1 life cycle: molecular control of IFN-γ to IL-10 switching. Trends Immunol 32, 278-286, doi:10.1016/j.it.2011.03.010 (2011).

41 Szelinski, F., Lino, A. C. & Dörner, T. B cells in systemic lupus erythematosus. Curr Opin Rheumatol 34, 125-132, doi:10.1097/bor.0000000000000865 (2022).

42 Harigai, M.et al. Excessive production of IFN-gamma in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J Immunol 181, 2211-2219, doi:10.4049/jimmunol.181.3.2211 (2008).

43 Scapini, P.et al. Proinflammatory mediators elicit secretion of the intracellular B-lymphocyte stimulator pool (BLyS) that is stored in activated neutrophils: implications for inflammatory diseases. Blood 105, 830-837, doi:10.1182/blood-2004-02-0564 (2005).

44 Yan, M.et al. Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nat Immunol 1, 37-41, doi:10.1038/76889 (2000).

45 Do, R. K.et al. Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. J Exp Med 192, 953-964, doi:10.1084/jem.192.7.953 (2000).

46 Bonelli, M., Smolen, J. S. & Scheinecker, C. Treg and lupus. Ann Rheum Dis 69 Suppl 1, i65-66, doi:10.1136/ard.2009.117135 (2010).

47 Olalekan, S. A., Cao, Y., Hamel, K. M. & Finnegan, A. B cells expressing IFN-γ suppress Treg-cell differentiation and promote autoimmune experimental arthritis. Eur J Immunol 45, 988-998, doi:10.1002/eji.201445036 (2015).

48 Chang, J. H., Kim, Y. J., Han, S. H. & Kang, C. Y. IFN-gamma-STAT1 signal regulates the differentiation of inducible Treg: potential role for ROS-mediated apoptosis. Eur J Immunol 39, 1241-1251, doi:10.1002/eji.200838913 (2009).

49 Kelchtermans, H.et al. Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther 7, R402-415, doi:10.1186/ar1500 (2005).

50 Siegel, J. P. Effects of interferon-gamma on the activation of human T lymphocytes. Cell Immunol 111, 461-472, doi:10.1016/0008-8749(88)90109-8 (1988).

51 Comte, D.et al. Signaling Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis Rheumatol 69, 1035-1044, doi:10.1002/art.40038 (2017).

52 Nakashima, H.et al. Polymorphisms within the interleukin-10 receptor cDNA gene (IL10R) in Japanese patients with systemic lupus erythematosus. Rheumatology (Oxford) 38, 1142-1144, doi:10.1093/rheumatology/38.11.1142 (1999).

53 Xu, Y.et al. Correlation between some Th1 and Th2 cytokine receptor gene polymorphisms and systemic lupus erythematosus in Chinese patients. Int J Dermatol 46, 1129-1135, doi:10.1111/j.1365-4632.2007.03258.x (2007).

Assessing the causality of interferon-γ and its receptor 1/2 with systemic lupus erythematosus risk using genetic data (2024)
Top Articles
Latest Posts
Article information

Author: Jerrold Considine

Last Updated:

Views: 5760

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Jerrold Considine

Birthday: 1993-11-03

Address: Suite 447 3463 Marybelle Circles, New Marlin, AL 20765

Phone: +5816749283868

Job: Sales Executive

Hobby: Air sports, Sand art, Electronics, LARPing, Baseball, Book restoration, Puzzles

Introduction: My name is Jerrold Considine, I am a combative, cheerful, encouraging, happy, enthusiastic, funny, kind person who loves writing and wants to share my knowledge and understanding with you.